126 research outputs found

    Prediction of Highway Noise Pollution Level by Model FHWA -TNM (Case Study: Vakilabad Highway in Mashhad-Iran)

    Get PDF
    This study aimed to model the noise pollution level in 9th and 11th districts of Mashhad municipality (Vakilabad highway) by using Traffic Noise Model (TNM 2.5). To this end, the equivalent sound level measurement of the 25 high-traffic stations selected along the Vakilabad highway in Mashhad was carried out by the TES-1358 sound level meter, for 6 months and each month for 1 working day in the year’s 2017. Traffic volume data was also measured to level the day by the wood line method and then the total data was introduced to model the traffic noise volume in the area. The assessment of the traffic noise of the study area in the model showed that the average equivalent sound level calculated by the model for the stations measured at Vakilabad highway is 6.51 dB less than the recorded values by the sound meter in the real environment by the average of 78 dB. In addition, the results of this study indicated that the TNM could provide a reasonable prediction of traffic volume and its distribution on the Vakilabad highway in Mashhad, due to providing a similar ranking of areas with low or high noise pollution and also displaying acceptable values of Leq calculated as compared to recorded sound values in the real environment

    Immunological Aspects of Varicocele

    Get PDF
    Varicocele is the most common cause of infertility in men. The mechanism by which varicocele cause the variable effect on male infertility and is still unknown. Varicocele is found in 35 to 81 % of infertile men, and is one treatable form of male infertility. Although many advances have occurred in the treatment of varicocele, it still represents an important and challenging aspect of basic research (male reproductive physiology and endocrinology, pathophysiology, and pharmacology of reproduction and fertility) and medical practice for urologists, pediatric surgeons, and general physicians, to date. This review provides an overview of the epidemiology, Clinical classification and Immunological aspects of varicocele and discusses the indications for, and interpretation of Immunological aspects of varicocele

    Identifying Indicators of Environmentally Sustainable Agriculture in Paddy Fields of Guilan Province

    Get PDF
    I n recent years, agriculture has become the prime polluter of natural resources. It is therefore essential to make assessments based on reliable indicators to ensure that an agricultural system remains not only productive, but also ecologically sound. A large area of arable land in Guilan province is devoted to rice cultivation so the transition to environmentally sound agricultural practice in paddy fields of the province is an important strategy. The main purpose of this study was to present a new and comprehensive framework for assessing environmentally sound agricultural practice applicable to the paddy fields in Guilan Province. A review of the relevant literature identified environmentally sound indicators that had been used by researchers in recent years. Then some parameters were introduced for examination and prioritization. The proposed structural model includes seven factors and 21 indicators. The target population included university faculty members and researchers who were familiar with the concepts of agricultural sustainability and that were familiar with the Guilan paddy fields. A structural on-line questionnaire was the main instrument used to gather information. Based on experts' points of view, the coefficient of significance for each of the selected indicators was measured using the Yager fuzzy screening method. The results obtained from structured questionnaires showed that 20 of the 21 indicators were appropriate for assessing environmentally sustainable agriculture. Abstract International Journal of Agricultural Management and Development (IJAMAD

    Wide-Area Composite Load Parameter Identification Based on Multi-Residual Deep Neural Network

    Get PDF
    Accurate and practical load modeling plays a critical role in the power system studies including stability, control, and protection. Recently, wide-area measurement systems (WAMSs) are utilized to model the static and dynamic behavior of the load consumption pattern in real-time, simultaneously. In this article, a WAMS-based load modeling method is established based on a multi-residual deep learning structure. To do so, a comprehensive and efficient load model founded on combination of impedance–current–power and induction motor (IM) is constructed at the first step. Then, a deep learning-based framework is developed to understand the time-varying and complex behavior of the composite load model (CLM). To do so, a residual convolutional neural network (ResCNN) is developed to capture the spatial features of the load at different location of the large-scale power system. Then, gated recurrent unit (GRU) is used to fully understand the temporal features from highly variant time-domain signals. It is essential to provide a balance between fast and slow variant parameters. Thus, the designed structure is implemented in a parallel manner to fulfill the balance and moreover, weighted fusion method is used to estimate the parameters, as well. Consequently, an error-based loss function is reformulated to improve the training process as well as robustness in the noisy conditions. The numerical experiments on IEEE 68-bus and Iranian 95-bus systems verify the effectiveness and robustness of the proposed load modeling approach. Furthermore, a comparative study with some relevant methods demonstrates the superiority of the proposed structure. The obtained results in the worst-case scenario show error lower than 0.055% considering noisy condition and at least 50% improvement comparing the several state-of-art methods.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10−910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Application of Glycyrrhiza glabra

    Get PDF
    The aim of this paper is to investigate the removal of toluene from gaseous solution through Glycyrrhiza glabra root (GGR) as a waste material. The batch adsorption experiments were conducted at various conditions including contact time, adsorbate concentration, humidity, and temperature. The adsorption capacity was increased by raising the sorbent humidity up to 50 percent. The adsorption of toluene was also increased over contact time by 12 h when the sorbent was saturated. The pseudo-second-order kinetic model and Freundlich model fitted the adsorption data better than other kinetic and isotherm models, respectively. The Dubinin-Radushkevich (D-R) isotherm also showed that the sorption by GGR was physical in nature. The results of the thermodynamic analysis illustrated that the adsorption process is exothermic. GGR as a novel adsorbent has not previously been used for the adsorption of pollutants

    Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a Middle Eastern megacity.

    Get PDF
    There is limited evidence for short-term association between mortality and ambient air pollution in the Middle East and no study has evaluated exposure windows of about a month prior to death. We investigated all-cause non-accidental daily mortality and its association with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and the Air Quality Index (AQI) from March 2011 through March 2014 in the megacity of Tehran, Iran. Generalized additive quasi-Poisson models were used within a distributed lag linear modeling framework to estimate the cumulative effects of PM2.5, NO2, and the AQI up to a lag of 45 days. We further conducted multi-pollutant models and also stratified the analyses by sex, age group, and season. The relative risk (95% confidence interval (CI)) for all seasons, both sexes and all ages at lag 0 for PM2.5, NO2, and AQI were 1.004 (1.001, 1.007), 1.003 (0.999, 1.007), and 1.004 (1.001, 1.007), respectively, per inter-quartile range (IQR) increment (18.8??g/m3 for PM2.5, 12.6?ppb for NO2, and 31.5 for AQI). In multi-pollutant models, the PM2.5 associations were almost independent from NO2. However, the RRs for NO2 were slightly attenuated after adjustment for PM2.5 but they were still largely independent from PM2.5. The cumulative relative risks (95% CI) per IQR increment reached maximum during the cooler months, including: 1.13 (1.06, 1.20) for PM2.5 at lag 0-31 (for females, all ages); 1.17 (1.10, 1.25) for NO2 at lag 0-45 (for males, all ages); and 1.13 (1.07, 1.20) for the AQI at lag 0-30 (for females, all ages). Generally, the RRs were slightly larger for NO2 than PM2.5 and AQI. We found somewhat larger RRs in females, age group >65 years of age, and in cooler months. In summary, positive associations were found in most models. This is the first study to report short-term associations between all-cause non-accidental mortality and ambient PM2.5 and NO2 in Iran

    Disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE) in Iran and its neighboring countries, 1990–2015

    Get PDF
    BACKGROUND: Summary measures of health are essential in making estimates of health status that are comparable across time and place. They can be used for assessing the performance of health systems, informing effective policy making, and monitoring the progress of nations toward achievement of sustainable development goals. The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) provides disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) as main summary measures of health. We assessed the trends of health status in Iran and 15 neighboring countries using these summary measures. METHODS: We used the results of GBD 2015 to present the levels and trends of DALYs, life expectancy (LE), and HALE in Iran and its 15 neighboring countries from 1990 to 2015. For each country, we assessed the ratio of observed levels of DALYs and HALE to those expected based on socio-demographic index (SDI), an indicator composed of measures of total fertility rate, income per capita, and average years of schooling. RESULTS: All-age numbers of DALYs reached over 19 million years in Iran in 2015. The all-age number of DALYs has remained stable during the past two decades in Iran, despite the decreasing trends in all-age and age-standardized rates. The all-cause DALY rates decreased from 47,200 in 1990 to 28,400 per 100,000 in 2015. The share of non-communicable diseases in DALYs increased in Iran (from 42% to 74%) and all of its neighbors between 1990 and 2015; the pattern of change is similar in almost all 16 countries. The DALY rates for NCDs and injuries in Iran were higher than global rates and the average rate in High Middle SDI countries, while those for communicable, maternal, neonatal, and nutritional disorders were much lower in Iran. Among men, cardiovascular diseases ranked first in all countries of the region except for Bahrain. Among women, they ranked first in 13 countries. Life expectancy and HALE show a consistent increase in all countries. Still, there are dissimilarities indicating a generally low LE and HALE in Afghanistan and Pakistan and high expectancy in Qatar, Kuwait, and Saudi Arabia. Iran ranked 11th in terms of LE at birth and 12th in terms of HALE at birth in 1990 which improved to 9th for both metrics in 2015. Turkey and Iran had the highest increase in LE and HALE from 1990 to 2015 while the lowest increase was observed in Armenia, Pakistan, Kuwait, Kazakhstan, Russia, and Iraq. CONCLUSIONS: The levels and trends in causes of DALYs, life expectancy, and HALE generally show similarities between the 16 countries, although differences exist. The differences observed between countries can be attributed to a myriad of determinants, including social, cultural, ethnic, religious, political, economic, and environmental factors as well as the performance of the health system. Investigating the differences between countries can inform more effective health policy and resource allocation. Concerted efforts at national and regional levels are required to tackle the emerging burden of non-communicable diseases and injuries in Iran and its neighbors
    • …
    corecore